f07 — Linear Equations (LAPACK) f07ujc

NAG C Library Function Document
nag_dtptri (f07ujc)

1 Purpose

nag_dtptri (f07ujc) computes the inverse of a real triangular matrix, using packed storage.

2 Specification

void nag_dtptri (Nag_OrderType order, Nag_UploType uplo, Nag_DiagType diag,
Integer n, double ap[], NagError *fail)

3 Description

nag_dtptri (f07ujc) forms the inverse of a real triangular matrix A using packed storage. Note that the
inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1-19

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_ RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether A is upper or lower triangular as follows:
if uplo = Nag Upper, A is upper triangular;
if uplo = Nag_Lower, A is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: diag — Nag DiagType Input
On entry: indicates whether A is a non-unit or unit triangular matrix as follows:
if diag = Nag_NonUnitDiag, A is a non-unit triangular matrix;

if diag = Nag UnitDiag, A is a unit triangular matrix; the diagonal elements are not
referenced and are assumed to be 1.

Constraint: diag = Nag NonUnitDiag or Nag_UnitDiag.

4: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] 07uje. 1

f07ujc NAG C Library Manual

5: ap[dim] — double Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the n by n triangular matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i — 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[2n —j) x (j—1)/2+1i—1], for i > j;

if order = Nag_RowMajor and uplo = Nag_Upper,

a;; is stored in ap[(2n —4) x (i —1)/2 4 j — 1], for i < j;

if order = Nag_RowMajor and uplo = Nag_Lower,

a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.

On exit: A is overwritten by A~', using the same storage format as described above.
6: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_SINGULAR

The matrix A is singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed inverse X satisfies
XA = 1| < c(n)elx] |4,

where c¢(n) is a modest linear function of n, and € is the machine precision.
Note that a similar bound for |AX — I| cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound

X — A7 < e(n)el A" |A] X1,
See Du Croz and Higham (1992).

07ujc.2 [NP3645/7]

f07 — Linear Equations (LAPACK)

8 Further Comments

The total number of floating-point operations is approximately %n3.

The complex analogue of this function is nag_ztptri (f07uwc).

9 Example
To compute the inverse of the matrix A, where

430 0.00 0.00
-3.96 —-4.87 0.00
040 031 -8.02
—0.27 0.07 —-5.95

A=

using packed storage.

9.1 Program Text

/* nag_dtptri (£07ujc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;

/* Arrays */
char uplo[2];
double #*ap=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[Jd*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT _FAIL(fail);

Vprintf ("f07ujc Example Program Results\n\n");
/* Skip heading in data file */

Vscanf ("s*[*\n] ");

Vscanf ("$1d%s*[*\n] ", &n);

ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
[NP3645/7]

0.00
0.00
0.00
0.12

f07ujc

f07ujc.3

f07ujc NAG C Library Manual

}

/* Read A from data file x/
Vscanf (" ' %1s ’'%*["\n] ", uplo);

if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf ("$1f", &A_UPPER(i,j));
¥
Vscanf ("sx[*\n] ");
3
else
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1; j <= 1i; ++3)
Vscanf ("%1f", &A_LOWER(i,j));
}
Vscanf ("sx[“\n] ");
}

/* Compute inverse of A */
fO07ujc(order, uplo_enum, Nag_NonUnitDiag, n, ap, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7ujc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print inverse x/
x04ccc(order, uplo_enum, Nag NonUnitDiag, n, ap,
"Inverse", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4ccc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (ap) NAG_FREE (ap);

return exit_status;
}

9.2 Program Data

fO07ujc Example Program Data

4 :Value of N
'L’ :Value of UPLO
4.30
-3.96 -4.87
0.40 0.31 -8.02
-0.27 0.07 -5.95 0.12 :End of matrix A

07ujc.4 [NP3645/7]

f07 — Linear Equations (LAPACK) f07ujc

9.3 Program Results

fO07ujc Example Program Results

Inverse
1 2 3 4
1 0.2326
2 -0.1891 -0.2053
3 0.0043 -0.0079 -0.1247
4 0.8463 -0.2738 -6.1825 8.3333

[NP3645/7] 07ujc.5 (last)

	f07ujc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	diag
	n
	ap
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

